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LETTER TO THE EDITOR

Spin-wave theory and Marshall’s theorems

Heinz Barentzen
Max-Planck-Institut f̈ur Festk̈orperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany

Received 26 August 1998

Abstract. The spin-wave ground state|9SW 〉 of the spin-1/2 Heisenberg antiferromagnet on
the square lattice is analysed in relation to Marshall’s theorems. It is shown that|9SW 〉 obeys
the Marshall sign rule and is an eigenstate ofSz to the eigenvalueM = 0, but not an eigenstate
of S2.

In studies of complicated models like the Heisenberg antiferromagnet (HAF) it is often
very helpful to have a few exact theorems at one’s disposal, which may serve as guidelines
to construct reasonable approximate solutions. For the eigenstates of the HAF on afinite
bipartite lattice, described by the usual Hamiltonian

H = J
∑
〈ij〉
Si · Sj (1)

with J > 0, two such theorems have been formulated by Marshall [1] which have later
been extended by Lieb and Mattis [2]. In his formulation of the theorems, Marshall utilizes
the fact thatS2 and Sz, the square of the total spinS = ∑

i Si and its z component,
with respective eigenvaluesS(S + 1) andM, commute with each other and withH. He
then proceeds to construct common eigenvectors|9M〉 of H andSz in terms of the basis
vectors|8M

α 〉, where each|8M
α 〉 describes a spin configuration on the lattice belonging to

the eigenvalueM. The first of the Marshall theorems restricts the form of the coefficients
ψM
α in the expansion

|9M
0 〉 =

∑
α

ψM
α |8M

α 〉 (2a)

with |9M
0 〉 denoting the state of lowest energy within the givenM sector. In the simplest

and most important case of atomic spinsSi = 1/2, the coefficients must obey theMarshall
sign criterion

ψM
α = (−1)AαφMα (2b)

with positive definiteφMα and the phases being defined by the numberAα of up-spins on
theA sublattice. The second Marshall theorem states that the absolute ground state|90〉 of
H is a singlet of the total spin, i.e.,

S2|90〉 = 0. (3)

For a proof of these theorems and their generalization to atomic spinsSi > 1/2 the reader
is referred to the original articles [1,2] and to the lucid discussion by Auerbach [3].

Because of the complicated nature of the Hamiltonian the exact ground state|90〉 is,
in general, not available and we are forced to resort to a suitable approximate treatment.
The simplest and most popular way of dealing with the HAF is the linear spin-wave (SW)
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approach [4] which yields an approximate ground state|9SW 〉 of H. The question we shall
mainly be concerned with in the present work is to what extent|9SW 〉 satisfies the Marshall
theorems.

Interest in this problem arose in connection with thet−J model describing the hopping
of a hole in an otherwise perfect HAF. In the traditional and widely accepted picture the
hole is seen as being dressed by a cloud of virtual magnons which, together with the hole,
form a coherently moving quasiparticle (‘spin polaron’), and in its analytic description the
SW approach is an important ingredient [5]. This picture has been questioned in recent work
[6], where the authors argue that the moving hole picks up a sequence of phases originating
from the Marshall signs which are scrambled by the hopping of the hole. Moreover, they
claim that this ‘phase string’ is non-repairable at low energy and leads to a vanishing
spectral weight, i.e., to the failure of the quasiparticle picture. We shall not touch upon
these conflicting views here, rather we will restrict ourselves to a re-examination of the SW
approach in the light of Marshall’s theorems. In view of the preceding remarks the question
of particular interest is, whether the sign rule (2b) is properly incorporated in|9SW 〉 or not.
We shall return to this problem after a short summary of SW theory.

Our SW approach is based on a projected version of the Dyson–Maleev representation
[7], where the spin operatorsS±i = Sxi ± iSyi andSzi are expressed in terms of two sets of
boson operators(ai, bi), one set for each sublattice(A,B) of the underlying square lattice,
which is chosen here because of its relevance to thet − J model. For spinsSi = 1/2 the
spin operators take the general form [7]

S
µ

i = PMµ

i (µ = +,−, z) (4)

whereP is a projection operator projecting onto the physical subspace, while theM
µ

i are
defined by the following expressions:

M+i = a†i M−i = (1− a†i ai)ai Mz
i = a†i ai − 1/2 (i ∈ A) (5a)

M+i = (1− b†i bi)bi M−i = b†i Mz
i = 1/2− b†i bi (i ∈ B). (5b)

The operators defined by (4) and (5) form a representation of the original spin-1/2 operators,
since they satisfy the spin commutation relations and act on the same Hilbert space. The
latter property follows from the presence of the projection operator whose explicit form is
derived in [7]. Upon substitution of (4) and (5) into (1) the Hamiltonian takes the form

H = PH (6a)

where

H = −NJ/2+ (J/2)
∑
〈ij〉
(a
†
i b
†
j + a†i ai + b†j bj + aibj )+H4+H6 (6b)

and H4 and H6 contain products of four and six boson operators, respectively. By
substituting (6a) into the commutator expression [H, P ] = 0, whose validity is shown
in [7], we recover Dyson’s [8] relationPH = PHP , which leads to a useful theorem
relating the eigenvalues and eigenstates ofH to those of the complete HamiltonianH. The
theorem states that if|8〉 is an eigenvector ofH belonging to some eigenvalueE, then

|9〉 = P |8〉 (7)

is an eigenvector ofH belonging to thesameeigenvalueE, provided|9〉 6= 0. The proof is
very simple and given in [7]. Thus, to obtain the eigenvalues and eigenstates ofH, it would
suffice to solve the eigenvalue problem of the much simpler HamiltonianH . Unfortunately,
however, even the latter Hamiltonian cannot be diagonalized exactly and is usually treated
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in the SW approximation, where only the bilinear part ofH is retained, whereasH4 andH6

are neglected. It should be mentioned here that the SW approximation leads to a violation
of the above theorem, whose validity rests on the full HamiltonianH rather than on its
bilinear part alone. However, this violation does not seem to be very serious in two and
higher dimensions, since various alternative treatments, analytical as well as numerical, are
all in good quantitative agreement with the results of SW theory [4].

The treatment of the bilinear part of (6b) proceeds in the usual way, i.e., the Wannier
operatorsai, bj are Fourier-transformed and then subjected to the Bogoliubov transformation

U = exp
[∑

q
θq(a

†
qb
†
−q − H.c.)

]
(8)

where here and in the following all wave-vector summations are restricted to the magnetic
Brillouin zone (BZ), unless stated otherwise. The real parameterθq(= θ−q) is determined
from the requirement thatU †HU assume diagonal form. This leads to the condition
tanh 2θq = −γq, where γq = (cosqx + cosqy)/2 is the structure factor of the square
lattice. Thus, in the SW approximation the transformedH becomes

U †HU ≈ E0+ 2J
∑
q

ωq(a
†
qaq + b†qbq) (9)

whereωq = (1− γ 2
q )

1/2 andE0/N ≈ −0.658J is the well known SW result [4,7] for the
ground-state energy per spin of the square-lattice HAF. Equation (9) shows that the SW
ground state ofH is |80〉 = U |0〉, where the boson vacuum|0〉 corresponds to the Ńeel
state with all spins down onA and all spins up onB. If this is inserted into (7) we find
that |9SW 〉, the desired ground state ofH in the SW approximation, is of the form

|9SW 〉 = P |80〉 = PU |0〉. (10)

Subsequently this expression will be further analysed in relation to the Marshall theorems.
The analysis of the SW ground state (10) requires some formal manipulations of the

Bogoliubov transformation (8). Following Kirzhnits [9] one finds that|80〉, the unprojected
ground state, may be written in the alternative form

|80〉 = N exp
(∑

q
tanhθqa

†
qb
†
−q
)
|0〉 (11)

where

tanhθq = −(1− ωq)/γq (12)

andN is a normalization factor, whose explicit form is irrelevant to the present discussion.
As the next step, the operators in the exponent of (11) are re-expressed in terms of the
Wannier operatorsai andbj . Making use of (12),

|80〉 = N exp

(
−
∑
i∈A

∑
j∈B

uij a
†
i b
†
j

)
|0〉 (13)

where (settingRij = Ri −Rj )
uij = 2

N

∑
q

1− ωq
γq

cos(q ·Rij ). (14)

To establish the connection with Marshall’s theorems, we still need to bring|9SW 〉 into
the form of equation (2a). This is readily achieved by means of the series expansion of
the exponential in (13) and subsequent multiplication of the whole series by the projection
operator. We thus arrive at the final expression

|9SW 〉 = N
∞∑
n=0

(−1)n|χn〉 (15a)
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where

|χn〉 = 1

n!

∑
i1...in

′∑
j1...jn

′
ui1j1 . . . uinjna

†
i1
. . . a

†
in
b
†
j1
. . . b

†
jn
|0〉 (15b)

with |χ0〉 ≡ |0〉. Here the primes on the summation signs indicate that alliν ∈ A

and all jµ ∈ B must be different. The effect ofP thus manifests itself merely in the
restricted summations, whereby all unphysical configurations with more than one boson
(spin deviation) per site are excluded. Each basis state in (15b) corresponds to a spin
configuration|8M=0

α 〉 with n up-spins on sublatticeA and the same number of down-spins
on sublatticeB. Hence, by denoting the summations in (15a, b) collectively as a single
summmation over configurationsα, |9SW 〉 is expressed in the form of equation (2a) with
M = 0. This establishes the desired connection between the expansions (2a) and (15) and
enables us to answer the question as to the extent the SW ground state satisfies the Marshall
theorems. The answer is given by the following:

Theorem: The spin-wave ground state|9SW 〉 defined by equation (10) satisfies the Marshall
sign criterion (2b) and is an eigenstate ofSz to the eigenvalueM = 0, but is not an
eigenstate ofS2.

Proof: To prove that the coefficients in (15) satisfy the Marshall sign criterion (2b), we start
with the observation that the sign factors in (15a) and (2b) may be identified, since they
are both determined by the number of up-spins on sublatticeA. Thus it suffices to show
that all uij in (15b) are positive definite. To prove this we use the power-series expansion
of ωq and insert it into equation (14). The coefficientuij is then expressed as

uij =
∞∑
n=1

4−n

2n− 1

(
2n

n

)
F
(2n−1)
ij (16)

where

F
(2n−1)
ij = 1

N

∑
q

γ (2n−1)
q cos(q ·Rij ) (17)

and the summation in (17) runs over the entire BZ. As the next step we use the binomial
expansion ofγ (2n−1)

q which, after insertion into (17), leads to the expression

F
(2n−1)
ij = 2

4n

2n−1∑
m=0

(
2n− 1

m

)
I2n−m−1(|Xij |)Im(|Yij |) (18)

whereXij andYij are the components ofRij and

Im(r) = 1

π

∫ π

0
dq (cosq)m cos(rq). (19)

This integral is tabulated [10] and one has

Im(r) = 2−m
(
m

k

)
for m > r andm− r = 2k (20)

wherek = 0, 1, 2, . . .; in all other cases the integral vanishes. Upon substitution of this
into (18) one finds thatF (2n−1)

ij > 0 for 2n− 1> |Xij | + |Yij | and equal to zero otherwise.
Hence,uij > 0 because of (16), which proves the first part of our theorem.

To prove the remaining claims of the theorem, we first need to expressSz andS2 in
terms of the boson operatorsai and bj . Using relations (4) and (5) one readily finds that
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Sz = PMz, whereMz = ∑
i a
†
i ai −

∑
j b
†
j bj . By applying this to the SW ground state,

equations (15), we find that

Sz|9SW 〉 = 0 (21)

an obvious result that has already been used in the discussion preceding the theorem. To
obtainS2|9SW 〉 one proceeds in the same fashion. A somewhat lengthy but straightforward
calculation gives the result

S2|9SW 〉 = −2N
∞∑
n=0

(−1)nn|χn〉 (22)

which clearly shows that|9SW 〉 is not an eigenstate ofS2. Equations (21) and (22) conclude
the proof of our theorem.

The failure of|9SW 〉 to satisfy the requirement (3) does not come as a surprise, since
it is known that in SW theory the symmetry is broken from the outset. This isnot in
conflict with Marshall’s second theorem, as a closer look reveals, since equation (3) holds
on afinite lattice, whereas|9SW 〉 is designed to describe the system in thethermodynamic
limit where spontaneous symmetry breaking occurs. The way symmetry is broken in the
HAF on the square lattice has been described in an illuminating paper by Horsch and von
der Linden [11]. Using numerical techniques and analytic arguments the authors show
that for an increasing numberN of sites an excited triplet state comes down and becomes
degenerate with the singlet ground state in the thermodynamic limit. This triplet state leads
to spontaneous symmetry breaking atT = 0 K [12].

In summary, we have proved that the SW ground state of the HAF obeys the Marshall
sign criterion, the sign factor being properly included in the Bogoliubov transformation.
Hence, SW theory is not to be blamed for issues related to a possible failure of the quasi-
particle description of holes in thet − J model [6]. Moreover, we have shown that the SW
ground state is an eigenstate ofSz to the eigenvalueM = 0, but is not an eigenstate ofS2.
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